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Hacking the Query Planner



Why this talk?

One thing I could really use is an overview of 
what order things get done in the planner.   
What are the major phases of processing and 
what's the function of each one?  ―  R. Haas
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Agenda

• What’s the problem we need to solve?

• Structure of the planner

• Some key data structures

• Cost estimation

• Future work
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Overall backend structure
• Parser

- Determines the semantic meaning of a query string

• Rewriter

- Performs view and rule expansion

• Planner

- Designs an execution plan for the query

• Executor

- Runs the plan
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The planner’s problem 

• Find a good query plan

• Don't spend too much time (or memory) 
finding it

• Support the extensible aspects of Postgres

- eg, custom data types, operators, functions

- this means hard-wired knowledge about data 
types and operators should be avoided as 
much as possible
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What’s a plan, exactly? 

• A plan is a tree of plan nodes

• Each plan node represents a specific type of 
processing to do, with all details executor needs

• At execution, a node yields a stream of tuples

• Relation scan nodes get their tuples from a table

• Most other node types read tuple stream(s) 
from child plan nodes, and process them 
somehow to create their result stream
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Types of plan nodes

• Relation scan nodes

- Sequential, plain index, bitmap index

• Join nodes

- Nestloop, nestloop with inner indexscan, 
hash, merge

• Special plan nodes

- Sort, aggregate, set operations (UNION etc)
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Attributes of a plan node
• Data source
- Relation to scan, if a table scan

- Input plan node, if a “processing” node
- Two input plan nodes, if a join node

• Target list (expressions to compute and return)

- Think SELECT list

• Selection conditions (“qualifiers” or “quals”)

- Think WHERE conditions
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Estimates for a plan node
• Output row count

- Need this to estimate sizes of upper joins

• Average row width
- Need both rowcount and width to estimate workspace 

for sorts, hashes, etc that must store node’s output

• Total cost
- Usually, the thing we want to minimize

• Startup cost
- For LIMIT queries, we interpolate between startup 

and total costs, since not all rows will be fetched
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Agenda
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• What’s the problem we need to solve?

• Structure of the planner

• Some key data structures

• Cost estimation

• Future work



But first, some jargon
• Var = variable = table column reference

• Rel = relation = real or virtual table

• Base rel = primitive FROM item (actual table, or 
separately-planned subquery, or set-returning function)

• Join rel = join relation (the result of joining a specific 
set of base relations)

• Qual = qualifier = WHERE clause or filter condition

• Join qual = qualifier that uses Vars from more than one 
base relation
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Phases of planning

• Preprocessing

- simplify the query if possible; collect information

• Scan/join planning

- decide how to implement FROM/WHERE

• Query special feature handling

- deal with plan steps that aren’t scans or joins

• Postprocessing
- convert results into form the executor wants
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Early preprocessing

• Simplify scalar expressions

• Expand simple SQL functions in-line

• Simplify join tree
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Simplify scalar expressions

What we know how to do is mainly constant-folding:

2 + 2   ⇒   4

CASE WHEN 2+2 = 4 THEN x+1
ELSE 1/0 END   

⇒  x+1

... not “ERROR: division by zero”, please
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Why bother simplifying?

• Do computations only once, not once per row

• View expansion and SQL function inlining can 
expose constant-folding opportunities not 
visible in the original query, so query author 
wasn’t necessarily stupid

• Simplifying takes a lot of load off the 
estimation functions, which by and large can’t 
cope with anything more complex than 
Variable = Constant
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Constant-folding is simple
• All we need for constant-folding is the ability to hand 

an expression tree to the executor to execute; the 
planner need know nothing of the operation’s 
detailed semantics

• People are sometimes surprised that we don’t 
simplify cases like reducing  x + 0  ⇒  x

• Problem is that would require a lot of datatype-
specific and operator-specific knowledge, plus 
infrastructure for extensions to add such knowledge

• ... but maybe someday ...

16



Expand simple SQL functions

CREATE FUNCTION incr(int) RETURNS int 
AS ‘SELECT $1 + 1’ LANGUAGE SQL;

SELECT incr(col) FROM tab;

⇒

SELECT col + 1 FROM tab;
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Simplify join tree

• Flatten (“pull up”) sub-selects if possible

- else, we’ll recurse to generate sub-plans

• Flatten UNION ALL, expand inheritance trees

• Reduce join strength (outer join ⇒ inner join)

• Convert IN, EXISTS sub-selects to semi-joins

• Identify anti-joins
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Flattening a simple view
CREATE VIEW v AS
 SELECT a, b+c AS d FROM t WHERE x > 0;

SELECT v.a, v.d FROM v WHERE v.a = 42;

Rewriter produces:
SELECT v.a, v.d FROM
 (SELECT a,b+c AS d FROM t WHERE x > 0) v
 WHERE v.a = 42;

Sub-select flattening produces:
SELECT t.a, t.b + t.c FROM t
 WHERE t.x > 0 AND t.a = 42;
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I lied about the ordering ...

• Actually, these preprocessing steps are done in 
a very specific order so that opportunities 
exposed by one step can be exploited later

• Some of them have to be intermixed in a single 
recursive pass over the query tree

• Getting all the optimizations to happen 
without duplicate processing is a bit tricky
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Later preprocessing
• Determine where WHERE clauses (“quals”) should be 

evaluated

- In general, we want to use each qual at the lowest 
possible join level

• Identify all referenced table columns (Vars), and find 
out how far up in the join tree their values are needed 

• Build equivalence classes for provably-equal expressions

• Gather information about join ordering restrictions

• Remove useless joins (needs results of above steps)
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Scan/join planning

• Basically deals with the FROM and WHERE parts 
of the query

• Knows about ORDER BY too

- mainly so that it can design merge-join plans

- but also to avoid final sort if possible

• Cost estimate driven
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Scan/join planning

• Identify feasible scan methods for base 
relations, estimate their costs and result sizes

• Search the join-order space, using dynamic 
programming or heuristic “GEQO” method,  
to identify feasible plans for join relations

• Honor outer-join ordering constraints

• Produce one or more “Path” data structures
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Paths versus Plans

• A Path is a simplified representation of a 
potential plan tree

• We build many Paths during planning, but 
convert only the finally selected Path to a full-
fledged Plan that the executor could handle

• Saves time, memory space when considering a 
large number of competing alternative plans
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Path generation/comparison

• Generate a Path data structure for each feasible 
method of performing a scan or join

• Compare cost to previously-generated Paths for the 
same base relation or join relation

• Immediately discard inferior Paths

- Keep only those that are cheapest (in either total 
or startup cost) for a given output sort ordering of 
their relation

- Get rid of useless sort orderings, too
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Join searching

• Multi-way joins have to be built up from 
pairwise joins, because that’s all the executor 
knows how to do

• For any given pairwise join step, we can 
identify the best input Paths and join methods 
via straightforward cost comparisons, resulting 
in a list of Paths much as for a base relation

• Finding the best ordering of pairwise joins is 
the hard part
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Join searching

• We usually have many choices of join order for 
a multi-way join query, and some orders will be 
cheaper than others

• If the query contains only plain inner joins, we 
can join the base relations in any order

• Outer joins can be re-ordered in some but not 
all cases; we handle that by checking whether 
each proposed join step is legal
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Standard join search method
• Generate paths for each base relation

• Generate paths for each possible two-way join

• Generate paths for each possible three-way join

• Generate paths for each possible four-way join

• Continue until all base relations are joined into a 
single join relation; then use that relation’s best path

• This “dynamic programming” approach was 
invented many years ago for IBM’s System R
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Inner indexscans are special

• The dynamic programming method supposes that 
any join is formed from independent Paths for the 
two input relations

• Doesn’t work for nestloop with inner indexscan, 
because using a join clause as an index condition 
requires the outer variable(s) to be available from 
the particular outer relation being joined to

• We keep separate lists of “inner indexscan” Paths 
for each base relation that has any indexable join 
clauses, organized according to required outer rels
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Join searching is expensive
• An n-way join problem can potentially be implemented 

in n! (n factorial) different join orders

• Considering all possibilities gets out of hand real fast, 
and is not feasible for queries with more than around 
ten base relations

• We use a few heuristics, like not considering clause-less 
joins

• With too many relations, fall back to “GEQO” (genetic 
query optimizer) search, which is even more heuristic 
and tends to fail to find desirable plans
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Heuristics used in join search

• Don't join relations that are not connected by any join 
clause, unless forced to by join-order restrictions

- Implied equalities count as join clauses, so this rule 
seldom leads us astray

• Break down large join problems into sub-problems 
according to the syntactic JOIN/sub-select structure

- Actually, it's done by not merging sub-problems to make 
a big problem in the first place (see “collapse limits”)

- This frequently sucks; would be useful to look for 
smarter ways of subdividing large join trees
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Genetic query optimizer

• Treats join order searching as a Traveling 
Salesman Problem, i.e., minimize the length of a 
“tour” visiting all “cities” (base relations)

• Does a partial search of the tour space using 
heuristics found useful for TSP

• Problem: join costs don’t behave very much like 
inter-city distances; they interact.  This makes 
the TSP heuristics not so effective

• This area desperately needs improvement
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Query special feature handling

• Deal with GROUP BY, DISTINCT, aggregate 
functions, window functions

• Deal with UNION/INTERSECT/EXCEPT

• Apply final sort if needed for ORDER BY

• This code is very ad-hoc, not very pretty, not 
terribly bright either

• Maybe someday we will rewrite into generate-
and-compare-paths style
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Postprocessing

• Convert to representation used by executor

• Expand Paths to Plans

• Example task: renumber Var nodes to meet 
executor's requirements (Vars in join nodes 
must be labeled “OUTER” or “INNER”, not 
with original base relation’s number)

• Mostly boring, except when it breaks
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I lied again ...

• Actually, Path-to-Plan conversion happens after 
scan/join planning, and before query special 
feature handling

• Other postprocessing does happen at the end

• This is because the query special feature code 
doesn’t use Paths to represent what it’s thinking 
about; it works on actual Plan trees

• If we were to switch over to doing special features 
with Paths, presumably this would change
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A map of backend/optimizer/

36

Subdirectory Contents

geqo GEQO join searching
path Path generation and cost estimation
plan Main planning driver code
prep Preprocessing
util Miscellaneous

... and don't forget

backend/utils/adt/selfuncs.c operator-specific selectivity functions
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geqo/geqo_copy.c boring support code
geqo/geqo_cx.c unused method for generating a mutated tour
geqo/geqo_erx.c active method for generating a mutated tour
geqo/geqo_eval.c evaluate cost of tour
geqo/geqo_main.c glue code
geqo/geqo_misc.c debug printout code
geqo/geqo_mutation.c randomly mutate a tour (by swapping cities)
geqo/geqo_ox1.c unused method for generating a mutated tour
geqo/geqo_ox2.c unused method for generating a mutated tour
geqo/geqo_pmx.c unused method for generating a mutated tour
geqo/geqo_pool.c boring support code (manage “pool” of tours)
geqo/geqo_px.c unused method for generating a mutated tour
geqo/geqo_random.c boring support code
geqo/geqo_recombination.c boring support code
geqo/geqo_selection.c randomly select two “parent” tours from pool
1200 lines
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path/allpaths.c core scan/join search code (mostly about base rels)
path/clausesel.c clause selectivity (driver routines mostly)
path/costsize.c estimate path costs and relation sizes
path/equivclass.c support code for managing equivalence classes
path/indxpath.c core path generation for indexscan paths
path/joinpath.c core path generation for joins
path/joinrels.c core scan/join search code (mostly about join rels)
path/orindxpath.c path generation for “OR” indexscans
path/pathkeys.c support code for managing PathKey data structures

path/tidpath.c core path generation for TID-scan paths
(WHERE ctid = constant)

8000 lines
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plan/analyzejoins.c late-stage join preprocessing
plan/createplan.c build Plan tree from selected Path tree
plan/initsplan.c scan/join preprocessing (driven by planmain.c)
plan/planagg.c special hack for planning min/max aggregates
plan/planmain.c driver for scan/join planning
plan/planner.c driver for all “extra” query features
plan/setrefs.c Plan tree postprocessing
plan/subselect.c handle sub-selects (that aren't in FROM)
8500 lines
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prep/prepjointree.c early-stage join preprocessing
prep/prepqual.c WHERE clause (qual) preprocessing

prep/preptlist.c target list preprocessing (mostly just for INSERT/
UPDATE/DELETE)

prep/prepunion.c
plan set operations (UNION/INTERSECT/EXCEPT,
but not simple UNION ALL); also has some support 
code for inheritance cases (“appendrels”)

3000 lines
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util/clauses.c assorted code for manipulating expression trees, includes 
constant folding and SQL function inlining

util/joininfo.c support code for managing lists of join clauses

util/pathnode.c
code for creating various sorts of Path nodes, and for 
comparing the costs of different Path nodes
⇒ add_path() can be seen as the very heart of the planner

util/placeholder.c code for managing PlaceHolderVars

util/plancat.c code for extracting basic info about tables and indexes from 
the system catalogs (sets up RelOptInfo and IndexOptInfo)

util/predtest.c
code for proving that a WHERE clause implies or contradicts 
another one; used for constraint exclusion and seeing if 
partial indexes can be used

util/relnode.c support code for managing RelOptInfo nodes
util/restrictinfo.c support code for managing RestrictInfo nodes
util/tlist.c support code for managing target lists
util/var.c support code for managing Vars

7000 lines



Agenda

• What’s the problem we need to solve?

• Structure of the planner

• Some key data structures

• Cost estimation

• Future work
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PathKeys

• PathKeys are a List structure representing the 
sort ordering of the output tuples of a Path;  
for example ORDER BY x, y is represented 
by a list of a PathKey for x and a PathKey for y

• They can also represent a desired ordering

• “Canonical” pathkeys are used to make pathkey 
comparison cheap (we can use pointer equality)

• For more info, read src/backend/optimizer/README
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EquivalenceClasses

• An EquivalenceClass represents a set of values 
that are known equal as a consequence of clauses 
like WHERE x = y AND y = z

• By transitivity, we can deduce that any two 
members of an EquivalenceClass are equal

• EquivalenceClasses also represent the value that   
a PathKey orders by (since if x = y, then ORDER 
BY x must be the same as ORDER BY y)

• Again, see src/backend/optimizer/README
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Agenda

• What’s the problem we need to solve?

• Structure of the planner

• Some key data structures

• Cost estimation

• Future work
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Cost estimation

• Everything I’ve talked about so far is just 
mechanism for generating alternatives to 
consider

• Cost estimation is what really drives the 
planner’s behavior

• If the planner can’t generate the plan you want, 
you need to fix the mechanism

• If it generates and rejects the plan you want, you 
need to fix the cost estimation
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Cost estimation: basic theory

• Cost of a plan node is 
assumed to increase 
linearly from startup 
cost to total cost as 
more tuples are 
returned

• With a LIMIT we will 
stop short of paying the 
total cost, if we fetch 
fewer than the total 
number of tuples
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Cost estimation: ugly reality
• Sometimes the real world is 

not so linear

• If we’re selecting a subset 
of scanned tuples, we will 
skip over some tuples

• Non-uniform distribution 
of desired tuples results in 
non-linear runtime

• This can result in seriously 
bad estimates for small 
LIMITs
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Plan cost models

• For each plan node type, costsize.c has a 
function to estimate its cost in terms of the 
primitive cost variables (page reads, operator 
evaluations, etc), given estimates about the 
numbers of rows, total data size, etc

• These models are a bit simplistic, but for the 
most part when the planner falls down, it's not 
a modeling failure but a statistical failure

• “Garbage in, garbage out” applies here!
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Result sizes for relation scans
• Number of rows returned by any given table scan is 

estimated as the raw relation size multiplied by the 
“selectivity” of relevant WHERE conditions

• Raw relation size is taken to be tuple density found 
by last ANALYZE (that is, # live tuples / # blocks) 
times relation’s current size in blocks

• Not perfect, but seems to work pretty well

• Width is just the sum of the per-column average 
widths estimated by ANALYZE for all the variables 
needed in the query
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Result sizes for joins

• Number of rows returned is the Cartesian 
product size (product of estimated rowcounts 
of input relations) multiplied by the selectivity 
of relevant join conditions

• ... with some special twiddling for outer joins, 
for instance a LEFT JOIN cannot produce 
fewer rows than its left input has

• Width is sum of the per-column average widths 
for variables that are needed above the join
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Selectivity is the hard part

• Applicable WHERE/JOIN ON conditions are broken into “clauses” 
that are combined with AND/OR/NOT

• Estimate selectivity of each clause separately, then combine results

• We have per-operator and per-special-clause selectivity estimation 
functions (these are mostly in utils/adt/selfuncs.c)

• Combination of per-clause estimates is done in clausesel.c

• AND/OR/NOT combinations are easy, if the clauses are 
independent ... but often they are not, and we get a bad result

• clausesel.c has some smarts for range restrictions, that is             
X >= C1 AND X <= C2
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Operator selectivity functions
• “Restriction” estimators are used for clauses containing 

Vars of just one relation

• These generally don't try to handle anything more 
complex than “Var op Constant” (but we have a liberal 
definition of “Constant”)

• “Join” estimators are used for clauses containing Vars 
from more than one relation

• These generally don't try to handle anything more 
complex than “Var op Var”

• Lots of unfinished work here
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Aggressive constant-folding

• When trying to reduce a clause sub-expression to  
a constant for selectivity estimation, we will 
substitute any available values for parameter 
symbols, and will evaluate stable as well as 
immutable functions

• For example,

ts_col >= now() - interval ‘1 day’

will be estimated using current time minus one day 
as the comparison constant
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Cost estimation API issues

• The “per operator” selectivity functions mostly are not 
truly specific to a single operator; rather we use 
functions like eqsel and scalarltsel, which 
embody knowledge about a class of operators

• I have a feeling that this is not the best API, mainly 
because it doesn’t seem extensible to cover estimation 
of interrelated clauses.  But changing it would break a 
lot of extension modules ...

• Also, nobody's ever fixed the Berkeley-era omission of 
selectivity estimators for functions that are accessed 
directly rather than via operators
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• What’s the problem we need to solve?

• Structure of the planner

• Some key data structures

• Cost estimation

• Future work
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Parameterized scans

• A nestloop inner indexscan is basically a scan parameterized 
by values from the current row of the outer relation

• Sometimes it'd be useful to parameterize a larger chunk of 
the plan than a single base-relation scan (another way to say 
that is we’d like an indexscan to be able to use a parameter 
from more than one join level up)

• We need this in situations involving join order restrictions

• Problem #1: avoid explosion in number of paths to consider

• Problem #2: size estimates for inner scans are not 
independent of what the outer relation is
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Foreign data wrappers

• As of 9.1, wrappers are on their own to produce 
plans and cost estimates for scans of foreign 
tables

• This obviously isn’t good for the long run

• Particularly bad: no support for inner indexscan 
on a foreign table

• Need to figure out what sorts of functionality 
FDWs need, then refactor existing planner code 
to provide that in a reasonably clean fashion
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Conclusion

• We really need more people working on the 
planner, the selectivity functions, etc

• I hope this talk has demystified the planner      
a bit, and given you some idea of where things 
can be improved
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