
Tom Lane
Red Hat

PGCon 2011

1

Hacking the Query Planner

Why this talk?

One thing I could really use is an overview of
what order things get done in the planner.
What are the major phases of processing and
what's the function of each one? ― R. Haas

2

Agenda

• What’s the problem we need to solve?

• Structure of the planner

• Some key data structures

• Cost estimation

• Future work

3

Overall backend structure
• Parser

- Determines the semantic meaning of a query string

• Rewriter

- Performs view and rule expansion

• Planner

- Designs an execution plan for the query

• Executor

- Runs the plan

4

The planner’s problem

• Find a good query plan

• Don't spend too much time (or memory)
finding it

• Support the extensible aspects of Postgres

- eg, custom data types, operators, functions

- this means hard-wired knowledge about data
types and operators should be avoided as
much as possible

5

What’s a plan, exactly?

• A plan is a tree of plan nodes

• Each plan node represents a specific type of
processing to do, with all details executor needs

• At execution, a node yields a stream of tuples

• Relation scan nodes get their tuples from a table

• Most other node types read tuple stream(s)
from child plan nodes, and process them
somehow to create their result stream

6

Types of plan nodes

• Relation scan nodes

- Sequential, plain index, bitmap index

• Join nodes

- Nestloop, nestloop with inner indexscan,
hash, merge

• Special plan nodes

- Sort, aggregate, set operations (UNION etc)

7

Attributes of a plan node
• Data source
- Relation to scan, if a table scan

- Input plan node, if a “processing” node
- Two input plan nodes, if a join node

• Target list (expressions to compute and return)

- Think SELECT list

• Selection conditions (“qualifiers” or “quals”)

- Think WHERE conditions

8

Estimates for a plan node
• Output row count

- Need this to estimate sizes of upper joins

• Average row width
- Need both rowcount and width to estimate workspace

for sorts, hashes, etc that must store node’s output

• Total cost
- Usually, the thing we want to minimize

• Startup cost
- For LIMIT queries, we interpolate between startup

and total costs, since not all rows will be fetched

9

Agenda

10

• What’s the problem we need to solve?

• Structure of the planner

• Some key data structures

• Cost estimation

• Future work

But first, some jargon
• Var = variable = table column reference

• Rel = relation = real or virtual table

• Base rel = primitive FROM item (actual table, or
separately-planned subquery, or set-returning function)

• Join rel = join relation (the result of joining a specific
set of base relations)

• Qual = qualifier = WHERE clause or filter condition

• Join qual = qualifier that uses Vars from more than one
base relation

11

Phases of planning

• Preprocessing

- simplify the query if possible; collect information

• Scan/join planning

- decide how to implement FROM/WHERE

• Query special feature handling

- deal with plan steps that aren’t scans or joins

• Postprocessing
- convert results into form the executor wants

12

Early preprocessing

• Simplify scalar expressions

• Expand simple SQL functions in-line

• Simplify join tree

13

Simplify scalar expressions

What we know how to do is mainly constant-folding:

2 + 2 ⇒ 4

CASE WHEN 2+2 = 4 THEN x+1
ELSE 1/0 END

⇒ x+1

... not “ERROR: division by zero”, please

14

Why bother simplifying?

• Do computations only once, not once per row

• View expansion and SQL function inlining can
expose constant-folding opportunities not
visible in the original query, so query author
wasn’t necessarily stupid

• Simplifying takes a lot of load off the
estimation functions, which by and large can’t
cope with anything more complex than
Variable = Constant

15

Constant-folding is simple
• All we need for constant-folding is the ability to hand

an expression tree to the executor to execute; the
planner need know nothing of the operation’s
detailed semantics

• People are sometimes surprised that we don’t
simplify cases like reducing x + 0 ⇒ x

• Problem is that would require a lot of datatype-
specific and operator-specific knowledge, plus
infrastructure for extensions to add such knowledge

• ... but maybe someday ...

16

Expand simple SQL functions

CREATE FUNCTION incr(int) RETURNS int
AS ‘SELECT $1 + 1’ LANGUAGE SQL;

SELECT incr(col) FROM tab;

⇒

SELECT col + 1 FROM tab;

17

Simplify join tree

• Flatten (“pull up”) sub-selects if possible

- else, we’ll recurse to generate sub-plans

• Flatten UNION ALL, expand inheritance trees

• Reduce join strength (outer join ⇒ inner join)

• Convert IN, EXISTS sub-selects to semi-joins

• Identify anti-joins

18

Flattening a simple view
CREATE VIEW v AS
 SELECT a, b+c AS d FROM t WHERE x > 0;

SELECT v.a, v.d FROM v WHERE v.a = 42;

Rewriter produces:
SELECT v.a, v.d FROM
 (SELECT a,b+c AS d FROM t WHERE x > 0) v
 WHERE v.a = 42;

Sub-select flattening produces:
SELECT t.a, t.b + t.c FROM t
 WHERE t.x > 0 AND t.a = 42;

19

I lied about the ordering ...

• Actually, these preprocessing steps are done in
a very specific order so that opportunities
exposed by one step can be exploited later

• Some of them have to be intermixed in a single
recursive pass over the query tree

• Getting all the optimizations to happen
without duplicate processing is a bit tricky

20

Later preprocessing
• Determine where WHERE clauses (“quals”) should be

evaluated

- In general, we want to use each qual at the lowest
possible join level

• Identify all referenced table columns (Vars), and find
out how far up in the join tree their values are needed

• Build equivalence classes for provably-equal expressions

• Gather information about join ordering restrictions

• Remove useless joins (needs results of above steps)

21

Scan/join planning

• Basically deals with the FROM and WHERE parts
of the query

• Knows about ORDER BY too

- mainly so that it can design merge-join plans

- but also to avoid final sort if possible

• Cost estimate driven

22

Scan/join planning

• Identify feasible scan methods for base
relations, estimate their costs and result sizes

• Search the join-order space, using dynamic
programming or heuristic “GEQO” method,
to identify feasible plans for join relations

• Honor outer-join ordering constraints

• Produce one or more “Path” data structures

23

Paths versus Plans

• A Path is a simplified representation of a
potential plan tree

• We build many Paths during planning, but
convert only the finally selected Path to a full-
fledged Plan that the executor could handle

• Saves time, memory space when considering a
large number of competing alternative plans

24

Path generation/comparison

• Generate a Path data structure for each feasible
method of performing a scan or join

• Compare cost to previously-generated Paths for the
same base relation or join relation

• Immediately discard inferior Paths

- Keep only those that are cheapest (in either total
or startup cost) for a given output sort ordering of
their relation

- Get rid of useless sort orderings, too

25

Join searching

• Multi-way joins have to be built up from
pairwise joins, because that’s all the executor
knows how to do

• For any given pairwise join step, we can
identify the best input Paths and join methods
via straightforward cost comparisons, resulting
in a list of Paths much as for a base relation

• Finding the best ordering of pairwise joins is
the hard part

26

Join searching

• We usually have many choices of join order for
a multi-way join query, and some orders will be
cheaper than others

• If the query contains only plain inner joins, we
can join the base relations in any order

• Outer joins can be re-ordered in some but not
all cases; we handle that by checking whether
each proposed join step is legal

27

Standard join search method
• Generate paths for each base relation

• Generate paths for each possible two-way join

• Generate paths for each possible three-way join

• Generate paths for each possible four-way join

• Continue until all base relations are joined into a
single join relation; then use that relation’s best path

• This “dynamic programming” approach was
invented many years ago for IBM’s System R

28

Inner indexscans are special

• The dynamic programming method supposes that
any join is formed from independent Paths for the
two input relations

• Doesn’t work for nestloop with inner indexscan,
because using a join clause as an index condition
requires the outer variable(s) to be available from
the particular outer relation being joined to

• We keep separate lists of “inner indexscan” Paths
for each base relation that has any indexable join
clauses, organized according to required outer rels

29

Join searching is expensive
• An n-way join problem can potentially be implemented

in n! (n factorial) different join orders

• Considering all possibilities gets out of hand real fast,
and is not feasible for queries with more than around
ten base relations

• We use a few heuristics, like not considering clause-less
joins

• With too many relations, fall back to “GEQO” (genetic
query optimizer) search, which is even more heuristic
and tends to fail to find desirable plans

30

Heuristics used in join search

• Don't join relations that are not connected by any join
clause, unless forced to by join-order restrictions

- Implied equalities count as join clauses, so this rule
seldom leads us astray

• Break down large join problems into sub-problems
according to the syntactic JOIN/sub-select structure

- Actually, it's done by not merging sub-problems to make
a big problem in the first place (see “collapse limits”)

- This frequently sucks; would be useful to look for
smarter ways of subdividing large join trees

31

Genetic query optimizer

• Treats join order searching as a Traveling
Salesman Problem, i.e., minimize the length of a
“tour” visiting all “cities” (base relations)

• Does a partial search of the tour space using
heuristics found useful for TSP

• Problem: join costs don’t behave very much like
inter-city distances; they interact. This makes
the TSP heuristics not so effective

• This area desperately needs improvement

32

Query special feature handling

• Deal with GROUP BY, DISTINCT, aggregate
functions, window functions

• Deal with UNION/INTERSECT/EXCEPT

• Apply final sort if needed for ORDER BY

• This code is very ad-hoc, not very pretty, not
terribly bright either

• Maybe someday we will rewrite into generate-
and-compare-paths style

33

Postprocessing

• Convert to representation used by executor

• Expand Paths to Plans

• Example task: renumber Var nodes to meet
executor's requirements (Vars in join nodes
must be labeled “OUTER” or “INNER”, not
with original base relation’s number)

• Mostly boring, except when it breaks

34

I lied again ...

• Actually, Path-to-Plan conversion happens after
scan/join planning, and before query special
feature handling

• Other postprocessing does happen at the end

• This is because the query special feature code
doesn’t use Paths to represent what it’s thinking
about; it works on actual Plan trees

• If we were to switch over to doing special features
with Paths, presumably this would change

35

A map of backend/optimizer/

36

Subdirectory Contents

geqo GEQO join searching
path Path generation and cost estimation
plan Main planning driver code
prep Preprocessing
util Miscellaneous

... and don't forget

backend/utils/adt/selfuncs.c operator-specific selectivity functions

37

geqo/geqo_copy.c boring support code
geqo/geqo_cx.c unused method for generating a mutated tour
geqo/geqo_erx.c active method for generating a mutated tour
geqo/geqo_eval.c evaluate cost of tour
geqo/geqo_main.c glue code
geqo/geqo_misc.c debug printout code
geqo/geqo_mutation.c randomly mutate a tour (by swapping cities)
geqo/geqo_ox1.c unused method for generating a mutated tour
geqo/geqo_ox2.c unused method for generating a mutated tour
geqo/geqo_pmx.c unused method for generating a mutated tour
geqo/geqo_pool.c boring support code (manage “pool” of tours)
geqo/geqo_px.c unused method for generating a mutated tour
geqo/geqo_random.c boring support code
geqo/geqo_recombination.c boring support code
geqo/geqo_selection.c randomly select two “parent” tours from pool
1200 lines

38

path/allpaths.c core scan/join search code (mostly about base rels)
path/clausesel.c clause selectivity (driver routines mostly)
path/costsize.c estimate path costs and relation sizes
path/equivclass.c support code for managing equivalence classes
path/indxpath.c core path generation for indexscan paths
path/joinpath.c core path generation for joins
path/joinrels.c core scan/join search code (mostly about join rels)
path/orindxpath.c path generation for “OR” indexscans
path/pathkeys.c support code for managing PathKey data structures

path/tidpath.c core path generation for TID-scan paths
(WHERE ctid = constant)

8000 lines

39

plan/analyzejoins.c late-stage join preprocessing
plan/createplan.c build Plan tree from selected Path tree
plan/initsplan.c scan/join preprocessing (driven by planmain.c)
plan/planagg.c special hack for planning min/max aggregates
plan/planmain.c driver for scan/join planning
plan/planner.c driver for all “extra” query features
plan/setrefs.c Plan tree postprocessing
plan/subselect.c handle sub-selects (that aren't in FROM)
8500 lines

40

prep/prepjointree.c early-stage join preprocessing
prep/prepqual.c WHERE clause (qual) preprocessing

prep/preptlist.c target list preprocessing (mostly just for INSERT/
UPDATE/DELETE)

prep/prepunion.c
plan set operations (UNION/INTERSECT/EXCEPT,
but not simple UNION ALL); also has some support
code for inheritance cases (“appendrels”)

3000 lines

41

util/clauses.c assorted code for manipulating expression trees, includes
constant folding and SQL function inlining

util/joininfo.c support code for managing lists of join clauses

util/pathnode.c
code for creating various sorts of Path nodes, and for
comparing the costs of different Path nodes
⇒ add_path() can be seen as the very heart of the planner

util/placeholder.c code for managing PlaceHolderVars

util/plancat.c code for extracting basic info about tables and indexes from
the system catalogs (sets up RelOptInfo and IndexOptInfo)

util/predtest.c
code for proving that a WHERE clause implies or contradicts
another one; used for constraint exclusion and seeing if
partial indexes can be used

util/relnode.c support code for managing RelOptInfo nodes
util/restrictinfo.c support code for managing RestrictInfo nodes
util/tlist.c support code for managing target lists
util/var.c support code for managing Vars

7000 lines

Agenda

• What’s the problem we need to solve?

• Structure of the planner

• Some key data structures

• Cost estimation

• Future work

42

PathKeys

• PathKeys are a List structure representing the
sort ordering of the output tuples of a Path;
for example ORDER BY x, y is represented
by a list of a PathKey for x and a PathKey for y

• They can also represent a desired ordering

• “Canonical” pathkeys are used to make pathkey
comparison cheap (we can use pointer equality)

• For more info, read src/backend/optimizer/README

43

EquivalenceClasses

• An EquivalenceClass represents a set of values
that are known equal as a consequence of clauses
like WHERE x = y AND y = z

• By transitivity, we can deduce that any two
members of an EquivalenceClass are equal

• EquivalenceClasses also represent the value that
a PathKey orders by (since if x = y, then ORDER
BY x must be the same as ORDER BY y)

• Again, see src/backend/optimizer/README

44

Agenda

• What’s the problem we need to solve?

• Structure of the planner

• Some key data structures

• Cost estimation

• Future work

45

Cost estimation

• Everything I’ve talked about so far is just
mechanism for generating alternatives to
consider

• Cost estimation is what really drives the
planner’s behavior

• If the planner can’t generate the plan you want,
you need to fix the mechanism

• If it generates and rejects the plan you want, you
need to fix the cost estimation

46

Cost estimation: basic theory

• Cost of a plan node is
assumed to increase
linearly from startup
cost to total cost as
more tuples are
returned

• With a LIMIT we will
stop short of paying the
total cost, if we fetch
fewer than the total
number of tuples

47

of tuples returned

Cost

Cost estimation: ugly reality
• Sometimes the real world is

not so linear

• If we’re selecting a subset
of scanned tuples, we will
skip over some tuples

• Non-uniform distribution
of desired tuples results in
non-linear runtime

• This can result in seriously
bad estimates for small
LIMITs

48

of tuples returned

Time

Plan cost models

• For each plan node type, costsize.c has a
function to estimate its cost in terms of the
primitive cost variables (page reads, operator
evaluations, etc), given estimates about the
numbers of rows, total data size, etc

• These models are a bit simplistic, but for the
most part when the planner falls down, it's not
a modeling failure but a statistical failure

• “Garbage in, garbage out” applies here!

49

Result sizes for relation scans
• Number of rows returned by any given table scan is

estimated as the raw relation size multiplied by the
“selectivity” of relevant WHERE conditions

• Raw relation size is taken to be tuple density found
by last ANALYZE (that is, # live tuples / # blocks)
times relation’s current size in blocks

• Not perfect, but seems to work pretty well

• Width is just the sum of the per-column average
widths estimated by ANALYZE for all the variables
needed in the query

50

Result sizes for joins

• Number of rows returned is the Cartesian
product size (product of estimated rowcounts
of input relations) multiplied by the selectivity
of relevant join conditions

• ... with some special twiddling for outer joins,
for instance a LEFT JOIN cannot produce
fewer rows than its left input has

• Width is sum of the per-column average widths
for variables that are needed above the join

51

Selectivity is the hard part

• Applicable WHERE/JOIN ON conditions are broken into “clauses”
that are combined with AND/OR/NOT

• Estimate selectivity of each clause separately, then combine results

• We have per-operator and per-special-clause selectivity estimation
functions (these are mostly in utils/adt/selfuncs.c)

• Combination of per-clause estimates is done in clausesel.c

• AND/OR/NOT combinations are easy, if the clauses are
independent ... but often they are not, and we get a bad result

• clausesel.c has some smarts for range restrictions, that is
X >= C1 AND X <= C2

52

Operator selectivity functions
• “Restriction” estimators are used for clauses containing

Vars of just one relation

• These generally don't try to handle anything more
complex than “Var op Constant” (but we have a liberal
definition of “Constant”)

• “Join” estimators are used for clauses containing Vars
from more than one relation

• These generally don't try to handle anything more
complex than “Var op Var”

• Lots of unfinished work here

53

Aggressive constant-folding

• When trying to reduce a clause sub-expression to
a constant for selectivity estimation, we will
substitute any available values for parameter
symbols, and will evaluate stable as well as
immutable functions

• For example,

ts_col >= now() - interval ‘1 day’

will be estimated using current time minus one day
as the comparison constant

54

Cost estimation API issues

• The “per operator” selectivity functions mostly are not
truly specific to a single operator; rather we use
functions like eqsel and scalarltsel, which
embody knowledge about a class of operators

• I have a feeling that this is not the best API, mainly
because it doesn’t seem extensible to cover estimation
of interrelated clauses. But changing it would break a
lot of extension modules ...

• Also, nobody's ever fixed the Berkeley-era omission of
selectivity estimators for functions that are accessed
directly rather than via operators

55

Agenda

• What’s the problem we need to solve?

• Structure of the planner

• Some key data structures

• Cost estimation

• Future work

56

Parameterized scans

• A nestloop inner indexscan is basically a scan parameterized
by values from the current row of the outer relation

• Sometimes it'd be useful to parameterize a larger chunk of
the plan than a single base-relation scan (another way to say
that is we’d like an indexscan to be able to use a parameter
from more than one join level up)

• We need this in situations involving join order restrictions

• Problem #1: avoid explosion in number of paths to consider

• Problem #2: size estimates for inner scans are not
independent of what the outer relation is

57

Foreign data wrappers

• As of 9.1, wrappers are on their own to produce
plans and cost estimates for scans of foreign
tables

• This obviously isn’t good for the long run

• Particularly bad: no support for inner indexscan
on a foreign table

• Need to figure out what sorts of functionality
FDWs need, then refactor existing planner code
to provide that in a reasonably clean fashion

58

Conclusion

• We really need more people working on the
planner, the selectivity functions, etc

• I hope this talk has demystified the planner
a bit, and given you some idea of where things
can be improved

59

